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Abstract. Dimension-2 and -4 gluon condensates are re-analyzed in large-N. Regge models with the
¢-function regularization which preserves the spectrum in any gg channel separately. We demonstrate
that the signs and magnitudes of both condensates can be properly described within the framework.

PACS. 12.38.Lg Other nonperturbative calculations — 12.38.-t Quantum chromodynamics

The dimension-2 gluon condensate, corresponding to
the vacuum expectation value of a gauge-invariant non-
perturbative and non-local operator and generating the
lowest 1/Q? power corrections, was proposed long ago [1]
and has been determined in instanton model studies [2],
phenomenological QCD sum rule re-analyses [3,4], theo-
retical considerations [5-9], non-local quark models [10],
and lattice simulations at zero [11,12] and finite [13] tem-
peratures. In the present paper we confirm our recent
findings [14], namely, that within the large-N, expansion
these 1/Q? corrections appear naturally within the Regge
framework, in the light of (-regularization. We show that
the signs and magnitudes of both the dimension-2 and -4
condensates can be accommodated comfortably with rea-
sonable values of the parameters of the hadronic spec-
tra. Many works compare Regge models to the Operator
Product Expansion (OPE) [15-19] but besides [19] the
dimension-2 condensate has been ignored.

We begin with a simple quantum-mechanical deriva-
tion of the (radial) Regge spectrum. For two relativistic
scalar quarks of mass m interacting via a linear confining
potential the mass operator in the CM frame is given by

M =2v/p>+m? + ogr, (1)

where o is the (scalar) string tension and p and r are the
relative momentum and distance, respectively. Squaring
\/P? + m? yields an equivalent Schrédinger operator, such
that p? = p2 + L?/r%. For excited radial states the Bohr-
Sommerfeld semiclassical quantization condition holds,

27T(7’L + a) =2 ‘/Oapr(’f‘)dT, (2)
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where p,.(r) is the local classical radial momentum defined
by pr(r)? + L?/r? + m? = (M — osr)? /4, a is the turning
point and « is of order of unity. Taking L = 0 and m =0
for simplicity, one has p,(r) = |M —ogr|/2and a = M/og.
The integral is trivial leading to

M? = 4nos(n + a) = 2n0(n + a), (3)

a (radial) Regge mass spectrum which in terms of the
spinor string tension ¢ = 205 (the factor depends on the
type of interaction [20]) seems fulfilled experimentally for
mesons [21] and signals confinement for the quarks. For
large meson masses, the level density becomes

p(M?) =" §(M* — M) — /dné(M2 — M?)

_dn_l/“dr_l (4)
dM? w )y pe(r) 270

which is a constant. Inclusion of finite quark mass correc-
tions is straightforward, yielding

dn 1 4m?2

— = —/1 - — f
dM?  2no M? or

Note that this corresponds to the two-body phase space
factor appearing in the absorptive part of two-point cor-
relators. Thus, at large energies the WKB approximation
holds and p(M?) looks like the phase space of two free
particles, featuring the quark-hadron duality.

The best way to look at the ¢ level density is to con-
sider two-point correlation functions in different channels,

M2 >4m?.  (5)

Z-Hua,l/b(q) — /d4$€—iq~w<O|T {J”a(fﬂ)Jub (0)} |O>

— H(q2) (ququ _guqu) 6ab, (6)
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where current conservation for both the vector and ax-
ial currents has explicitly been used. At high Euclidean
momentum OPE can be performed. Equivalently, in the
Euclidean coordinate space one has

(Ju(2)J,(0)) = (9""* — 9"0") I (x). (7)
The function IT(x) has dimension x=%. Thus, at short dis-
tances one expects to have (up to possible logarithms)

0o 0y O
H(m):—0+—2+—4+06 (8)

We digress that the term containing O», an operator of
dimension-2, is very special, since it yields a contribution
of the form (g% — O*0")z~2 = (g"2? — data¥)z~*
which, in addition to being conserved, is also traceless.
Thus, contracting and taking the derivative 0% do no
commute. There is no traceless and transverse term in
momentum space, since conservation implies the form
A(g"q” — ¢*g"") but tracelessness requires A = 0. This
problem appears in chiral quark models; the dimension-
2 object is the constituent-quark mass squared, Oy ~
(02 + w2y ~ M>.

Recent discussions incorporate Oy in OPE. From [9]
we get up to dimension 6 in the chiral limit,

1 2
v a(Q*) = m{ - (1 + OZ?S) 10%%

as A2 7w {asG?) 256w as{qq)?
_ - Q2 + § Q4 + 1 QG }a
My _A(Q?) = 33” O‘Séqﬁq> : 9)

where A% corresponds to the dimension-2 condensate.
In the large-N, limit one has (up to subtractions) [22]

Z M2 +Q2 c.t., (10)

where the sum involves infinitely many resonances. This
function satisfies a dispersion relation of the form

o] 2
Ty (Q*) :/0 ds%sp:_(gz,

with one subtraction, ITy(0) = 0, due to Coulomb’s law
and the spectral function in the vector channel given by

ZFV (s — MZ).

(11)

py(s) = = Tm Ty (s) (12)

At large values of the squared CM energy s, it becomes

dn

dM% M‘Q,:s.
(13)

Matching to the free massless quark result py(s) =

N./(127%)0(s) gives at large values of n

dn__ Ne 1
dMZ 3 4n?’

v (s) = /OOO F26(s — M2)dn = Fy(n)?

Fy (n)? (14)
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For constant Fy this implies the asymptotic spectrum
M3 — 2mon with the string tension given by 270 =
2472 F2 /N,. If we identify Fyy = 154 MeV from the p —
27 decay [23] which corresponds to only one resonance,
we get /o = 546 MeV. Lattice calculations [24] provide
Vo = 420 MeV.

In dimensional regularization the coupling of the res-
onance to the current acquires an additional dimension
Fy — Fyu® with € = d — 4. By choosing u = My one
gets F2 — F2MZ<. The regularized correlator is an ana-
lytic function for @* < mJ (the lowest mass), so we can
Taylor-expand at small Q2. We can then regularize the
finite coefficients of the expansion and proceed by ana-
Iytic continuation both in Q2 and e. The regularization
only acts for truly infinitely many resonances. At large
Euclidean momenta one gets

2 2 2 2]\4"2/+26
)=> FpM¥F-Y F} o T (15)
14 14

The coefficients of powers in 1/Q? of the expansion are
convergent provided one computes the sum first and then
takes the limit € — 0 corresponding to the use of the
¢-function regularization (see, e.g., [25]),

ZFVMQ” = lim ZFVM (16)

In other words, one may expand formally at large Q2 and
re-interpret the result by means of the {-function regular-
ization. Using the axial-axial correlator at large N,

I 4( +Z M2 +Q2 + et (17)

and matching to (9) yields the two Weinberg sum rules:
SR
A %

0= FiMi-> FpM;
A 14

(WSR 1),

(WSR 11).

These sums are assumed to be (-regularized, see eq. (16).
The simplest Regge model is given by
M‘%n = M + 27on, thn = M3 + 27on, (18)
n = 0,1,2..., which seems fulfilled [21] experimentally.
The corresponding couplings are constant, Fyy = Fy = F
and the (-function regularized sums follow from

= s _ s M2
Z(na+M2) =a’( <—s, T) .

n=0

(19)

This function is analytic in the complex plane Re(s) < —1
with the exception of s = —1, admitting analytic contin-
uation to any s. Actually, for positive powers one gets
the Bernoulli polynomials {(—k,2) = —Byy1(2)/(k + 1),
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Fig. 1. Dimension-2 (solid line, in GeV?) and -4 (dashed line,
in GeV*) condensates plotted as functions of v/o. The horizon-
tal lines indicate estimates from the literature.

where By = 1, By = 2—1/2, By = > —1+1/6, etc. An im-
portant feature of the (-function is that it regulates each
spectrum separately, i.e. under regularization one cannot
apply the distributive property. For instance,

D (an+ MP)° = (an+ M3)° #0. (20)
n=0 n=0

In other words, the difference of the regularized sums does
not coincide with the regularized difference. The finite
terms in the difference have to do with preserving the spec-
tra in the vector and axial channels separately, and hence
a chiral asymmetry is generated. All these (-function re-
sults reproduce the direct asymptotic expansion of exact
sums in terms of the digamma functions, but allow to dis-
cuss cases where the sums cannot be carried out before
expanding in large Q2.

The strict linear Regge model does not generate con-
densates with the proper signs. In [14] (see also [26]) we
consider the following simple modification:

My =m,, M, = My +2ron, n>1,

Mf"n = M3 +2mon, n>0. (21)

Here the lowest p mass is shifted, otherwise all is kept
“universal”, including constant residues for all states.
With (21) the Weinberg sum rules are (we set N, = 3)

M3 = M + 8n% f2,
8n2 f? (47r2f2 + MVQ)

Ino = 872 F? = 3
42 f2 —m,% + My

(22)

When m, = 0.77 GeV is fixed, the model has only one free
parameter left. We may take it to be My ; however, it is
more convenient to express it through the string tension
o, which is then treated as a free parameter. Thus

M2 — —1673 f* + A0 f? — m,%o
v 4f?7t — 0o ’

(23)
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and the condensates, obtained by matching to (9), are

asA? 167 f* — mo? + m,’o

473 16273 — 4720
a5<G2) 2 o4 2
S5\ 1 9 _

Tor 7w f o f
30m%

82 (24)

mPQU 5> — 27 | + 0—2.

(0 —4f?n) 12

Despite the strong dependence on /o (see fig. 1) the cor-

rect signs, —A\? > 0, (G?) > 0, and reasonable numbers
are reproduced in the range 0.48 < /o < 0.5GeV [14].
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